Chapter 4 Surveying the Watershed to Inventory Your Critical Area

Objectives

- 1) Survey the Watershed to refine the Critical Area
- 2) Refine the list of known and suspected pollutants, sources and causes
- 3) To locate the Sources of pollution on a Watershed Map
- 4) Quantify the Sources of pollution
- 5) To move the Steering and Technical Committees to a position of knowledge

Primary Data Collection

- Topographic Map
 - Hydrology
- Roads
- Soil Map
- Land Use
- Political Jurisdictions

GIS LAYERS

BASE MAPS LAND USE/COVER INVENTORY TOPOGRAPHY/BATHYMETRY **HYDROLOGY WETLANDS ENVIRONMENTAL CONCERN AREAS UNIQUE FEATURES (ARCHEOLOGY, HISTORY) EROSION/RECESSION RATES SEDIMENT DEPOSITION AREAS SURFACE SOIL TYPES GEOLOGIC STRATIFICATIONS GROUNDWATER SAMPLING SITES CONTAMINATION SITES INTAKES AND DISCHARGES** 100/500 YEAR FLOOD ZONES STRUCTURE INVENTORY **BASE FLOOD ELEVATIONS PROPERTY BOUNDARIES LAND VALUES CENSUS TRACTS POLITICAL BOUNDARIES PERMIT LOCATIONS PROJECT DESIGN FILES**

COORDINATE REFERENCE SYSTEMS

What Methods Are Available For Inventorying the Critical Area?

- Visual Method
- Computer Modeling Method
- Public Survey Method
- Monitoring Method

Visual Method

1) Walk, drive, and/or canoe

2) Technical Committee, Steering Committee, Local Stakeholders

3) Take lots of photographs

4) Standardized data sheets by sources

Most watershed groups have used an inventory sheet that includes information such as:

- Land Use
- The condition of the stream bank vegetation
- Amount of canopy(i.e., shade)
- The slope of the bank
- The stability of the stream bank
- In-stream water quality indicators such as nuisance algalegrowth
- Stream bed composition
- The condition of road-stream crossings
- Storm water or drainage pipes discharging into the stream

Computer Modeling Method

1) Simulate real-world conditions

2) Predict alternative scenarios

Public Survey Method

1) Survey people who live in Critical Area

2) Design and test the survey

3) Conducting the survey

4) Survey results

Monitoring Method

1) Habitat Monitoring

2) Chemical WaterQuality Monitoring

3) Hydrologic Monitoring

What is Done With Information That Was Collected?

1) Update the list of known and suspected Pollutants

2) Update the list of known and suspected Sources

3) Quantify the Sources

Example Watersheds Sources – Following the Inventory

Pollutants	Sources	Causes
Nutrients(P	Livestock in	Uncontrolled
and N) (k)	stream (k)	Access (k)
	Failing	Improperly
	septic	sited,
	systems (s)	designed,
		and/or
		maintained
		septic
		systems (s)
	Residential	Improper
	fertilizer use	usage
	(k)	

Products From the Critical Area Inventory

Based on the Inventory of the Critical Area:

- 1) Updated list of verified Pollutants
- 2) Updated list of known Sources
- 3) The number of the Sources
- 4) The Location of the Sources on the Watershed Map
- 5) A display of the data in tabular form
- 6) A brief summary of the method(s) used to conduct the inventory